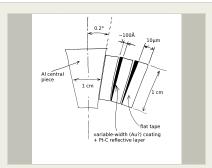
Scotch-Tape Mirror for Hard X-rays

Completed Technology Project (2011 - 2013)

Project Introduction

The Scotch-Tape Mirror for Hard X-rays project is to test the possibility of building a grazing incidence mirror for hard X-rays (E>20 keV) using a "scotch-tape" design, in which a thin plastic tape with a specific thickness profile and a multilayer reflective coating is tightly wound into a roll. The goal is to find a low-cost way of building a telescope for hard X-rays with a very large effective area.


The project is to build a grazing incidence mirror for hard X-rays (E>20 keV) using a "scotch-tape" design, in which a thin plastic tape with a specific thickness profile and a multilayer reflective coating is tightly wound into a roll. Key challenges are (a) to find a suitably smooth tape subatrate (this has been done), (b) to wind a large number of tape shells onto the smooth metal centerpiece without introducing and accummulating shape irregularities, and (c) to give the tape the variable thickness profile in order to achieve the desired optical figure. Our immediate goal is to demonstrate the idea feasibility by building a crude conical X-ray concentrator. If successful, we will aim at building and flying a mirror prototype on a balloon and then proposing for an Explorer mission or MOO. The ultimate goal is a telescope with 1 m^2 effective area at E=30 keV.

Anticipated Benefits

N/A

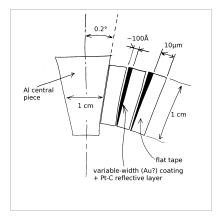
Primary U.S. Work Locations and Key Partners

Project Image ROE FY12 CIF 353 AP Scotch-Tape Mirror for Hard X-rays

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Organizational Responsibility	2	
Project Management	2	
Links	3	
Project Website:	3	
Technology Maturity (TRL)	3	
Technology Areas	3	

Scotch-Tape Mirror for Hard X-rays


Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations

Maryland

Images

10526-1363818953824.gifProject Image ROE FY12 CIF 353
AP Scotch-Tape Mirror for Hard X-rays

(https://techport.nasa.gov/imag e/1856)

10526-1363819148835.gifProject Image ROE FY12 CIF 353

AP Scotch-Tape Mirror for Hard X-rays

(https://techport.nasa.gov/imag e/1857)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Innovation Fund: GSFC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Peter M Hughes

Project Manager:

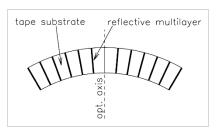
Stanley D Hunter

Principal Investigator:

Maxim L Markevitch

Co-Investigators:

Peter J Serlemitsos William W Zhang Takashi Okajima



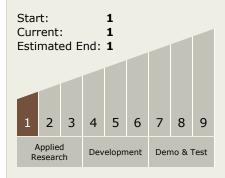
Center Innovation Fund: GSFC CIF

Scotch-Tape Mirror for Hard X-rays

Completed Technology Project (2011 - 2013)

55.png

Project Image ROE FY12 CIF 353 AP Scotch-Tape Mirror for Hard X-rays (https://techport.nasa.gov/imag e/1152)


Links

NTR 1 (http://n/a (case number GSC-16590-1, e-NTR number 1339168980))

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Technology Maturity (TRL)

Technology Areas

Primary:

 TX08 Sensors and Instruments
 TX08.2 Observatories
 TX08.2.1 Mirror
 Systems

